Enterococci are Gram-positive bacteria that colonize the gastrointestinal tract. Clinically relevant enterococci are intrinsically resistant to antibiotics in the cephalosporin family, and prior therapy with cephalosporins is a major risk factor for the acquisition of an enterococcal infection. One important determinant of intrinsic cephalosporin resistance in enterococci is the two-component signal transduction system CroS/R. The CroS sensor kinase senses cephalosporin-induced cell wall stress to become activated and phosphorylates its cognate response regulator CroR, thereby enhancing CroR-dependent gene expression to drive cephalosporin resistance. CroS possesses a short (~30 amino acids) extracellular segment between its two transmembrane domains near the N-terminus, but whether this extracellular segment is important for sensing cephalosporin stress, or possesses any other function, has remained unknown. Here, we explored the role of the CroS extracellular segment through mutagenesis and functional studies. We found that mutations in the CroS extracellular segment biased CroS to adopt a more active state during ceftriaxone stress, which led to an increase in CroR-dependent gene expression and hyper-resistance to ceftriaxone. Importantly, these mutants still responded to ceftriaxone-mediated stress by enhancing CroS activity, indicating that the extracellular segment of CroS does not directly bind a regulatory ligand. Overall, our results suggest that although the extracellular segment of CroS does not directly bind a regulatory ligand, it can modulate the magnitude of CroS signaling for phosphorylation of CroR to regulate cephalosporin resistance through the resulting changes in CroR-dependent gene expression.
IMPORTANCE
Clinically relevant enterococci are intrinsically resistant to antibiotics in the cephalosporin family. The CroS sensor kinase senses cephalosporin-induced cell wall stress to trigger signaling that drives cephalosporin resistance, but the mechanism by which CroS senses stress is unknown. We report the first functional characterization of the CroS extracellular segment, revealing that mutations in the extracellular segment did not prevent CroS from responding to cell wall stress but instead biased CroS to adopt a more active state during cephalosporin stress that led to an increase in CroR-dependent gene expression and hyper-resistance to ceftriaxone. Overall, our results suggest that the extracellular segment of CroS does not directly bind to a regulatory ligand but that it can modulate the magnitude of CroS signaling.