We present the imaging and spectroscopic analysis of the combined Chandra ACIS-S observations of the Compton-thick Seyfert 2 galaxy NGC 4945. We performed a spatially-resolved spectroscopy of the circumnuclear environment of the source, picturing the innermost 200 parsecs around the highly absorbed nucleus. The additional 200 ks ACIS-S data with respect to the previous campaign allowed us to map with even greater detail the central structure of this source and to discover an enhanced iron emission in the innermost nuclear region, with respect to the associated Compton reflection continuum. We revealed that the Equivalent Width of the iron Kα line is spatially variable (ranging from 0.5 to 3 keV), on scales of tens of parsecs, likely due to the ionization state and orientation effects of the reprocessing material, with respect to the central X-ray illuminating source. A clump of highly ionized Fe xxv He-α is also detected, 40 parsecs east to the nucleus. When observations taken years apart are considered, the central unresolved reflected emission is found to remain constant.