The margins of the deep-water sedimentary basins west of Ireland contain a number of large clusters (provinces) of spectacular carbonate mounds and build-ups. These basins have a complex development history involving the interplay of rift tectonics, thermal subsidence, igneous activity and oceanographic variations. The Porcupine and Rockall basins both rest upon thin continental crust, the consequence of major rift episodes in Permo-Triassic, Late Jurassic and Early Cretaceous times. Phases of volcanism occurred in the Early Cretaceous and especially in the Early Cenozoic. Fluid flow within the basins is likely to have been controlled by the overall basin geometry and by the distribution and linkage of permeable strata with fault systems, stratal surfaces and unconformities. A number of regional unconformities, controlled by both basin tectonic and regional oceanographic effects, can be mapped and correlated throughout the Porcupine and Rockall basins. The youngest of these unconformities (C10: Early Pliocene) can be traced throughout much of the NW European Atlantic margin. It forms the horizon on which virtually all the carbonate mounds in the basins develop, suggesting a geologically instantaneous mound nucleation and growth event. Although the control on their development is uncertain, the mound clusters show a spatial association with lithified strata, buried contourite and deltaic deposits, slope failure features and with the basin margins. Analysis of these relationships points to a combination of geological and oceanographic processes controlling mound initiation and growth.