Color-motion feature-binding errors occur in the periphery when half of the objects are red and move downward, and the other half are green and move upward. When red and green objects in the central visual field are similar but move in the opposite directions (red upward, green downward), peripheral objects often take on the perceived motion direction of the like-colored central objects (Wu, Kanai, & Shimojo, 2004). The present study determined whether color is essential to elicit these motion-binding errors, and tested two hypotheses that attempt to explain them. One hypothesis holds that binding errors occur because peripheral and central objects become linked if they have combinations of features in common. A peripheral object's link to central objects overwhelms its posited weak peripheral representation for motion feature binding, so the peripheral object appears to move in the direction of the linked central objects. Eliminating color by making all stimuli achromatic, therefore, should not increase peripheral binding errors. An alternative hypothesis is that binding errors depend on the overall feature correspondence among central and peripheral features represented at a preconjunctive level. In this case, binding errors may increase when all objects are changed to achromatic because chromatic central/peripheral correspondence is maximal (100%). Experiments showed more motion-binding errors with all-achromatic objects than with half red and half green objects. This and additional findings imply that peripheral motion-binding errors (a) can be elicited without color and (b) depend at least in part on the similarity of central and peripheral features represented preconjunctively.