We resolve the density structure of a possible magma reservoir beneath Aso, an active volcano on Kyushu Island, Japan, by inverting gravity data. In the context of the resolved structure, we discuss the relationship between the fault rupture of the 2016 Kumamoto earthquake and Aso volcano. Low-density bodies were resolved beneath central Aso volcano using a three-dimensional inversion with an assumed density contrast of ±0.3 g/cm 3 . The resultant location of the southern low-density body is consistent with a magma reservoir reported in previous studies. No Kumamoto aftershocks occur in the southern low-density body; this aseismic anomaly may indicate a ductile feature due to high temperatures and/or the presence of partial melt. Comparisons of the location of the southern low-density body with rupture models of the mainshock, obtained from teleseismic waveform and InSAR data, suggest that the rupture terminus overlaps the southern low-density body. The ductile features of a magma reservoir could have terminated rupture propagation. On the other hand, a northern low-density body is resolved in the Asodani area, where evidence of current volcanic activity is scarce and aftershock activity is high. The northern low-density body might, therefore, be derived from a thick caldera fill in the Asodani area, or correspond to mush magma or a high-crystallinity magma reservoir that could be the remnant of an ancient intrusion.Keywords: 2016 Kumamoto earthquake, Density structure, Gravity inversion, Volcano-tectonic interactions © The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
BackgroundThe 2016 Kumamoto earthquake (M JMA 7.3) occurred on April 16, 2016, at 01:25 Japan Standard Time (JST, UTC +9) in the Kumamoto region, Kyushu Island, southwestern Japan. The epicenter (32.76°N, 130.76°E) and hypocentral depth (12 km below sea level) determined by the Japan Meteorological Agency (JMA) are very close to Aso volcano, the largest active volcano with a large caldera (15 × 25 km) in Japan (Fig. 1). The rupture process of the 2016 Kumamoto earthquake was resolved by Yagi et al. (2016): Rupture initiated at the hypocenter on the southwest part of the focal plane and propagated east for about 17 s. The area of maximum slip, with a value of ~5.7 m, was centered ~10 km northeast of the epicenter. The effective slip area was about 40 km long and 15 km wide, and the total seismic moment was 5.1 × 10 19 Nm (M w = 7.0). Aftershock distributions and focal mechanism determined by Yagi et al. (2016) indicate that the 2016 Kumamoto earthquake occurred along an active strike-slip fault known as the Futagawa Fault (Research Group for Active Faults of Japan 1991), which bel...