We present HST ACS coronagraphic observations of HD 100546, a B9.5 star, 103 pc away from the Sun, taken in the F435W, F606W, and F814W bands. Scattered light is detected up to 14 00 from the star. The observations are consistent with the presence of an extended flattened nebula with the same inclination as the inner disk. The well-known ''spiral arms'' are clearly observed and trail the rotating disk material. Weaker arms never before reported are also seen. The interarm space becomes brighter, but the structures become more neutral in color at longer wavelengths, which is not consistent with models that assume that they are due to the effects of a warped disk. Along the major disk axis, the colors of the scattered light relative to the star are Á( F435W À F606W ) % 0:0Y0:2 mag and Á( F435W À F814W ) % 0:5Y1 mag. To explain these colors, we explore the role of asymmetric scattering, reddening, and large minimum sizes on ISM-like grains. We conclude that each of these hypotheses by itself cannot explain the colors. The disk colors are similar to those derived for Kuiper Belt objects, suggesting that the same processes responsible for their colors may be at work here. We argue that we are observing only the geometrically thick, optically thin envelope of the disk, while the optically thick disk responsible for the far-IR emission is undetected. The observed spiral arms are then structures on this envelope. The colors indicate that the extended nebulosity is not a remnant of the infalling envelope but reprocessed disk material.