Neuropsychological and neurophysiological evidence point to a role for the left fusiform gyrus in visual word recognition, but the specific nature of this role remains a topic of debate. The aim of this study was to measure the sensitivity of this region to sublexical orthographic structure. We measured blood oxygenation (BOLD) changes in the brain with functional magnetic resonance imaging while fluent readers of English viewed meaningless letter strings. The stimuli varied systematically in their approximation to English orthography, as measured by the probability of occurrence of letters and sequential letter pairs (bigrams) comprising the string. A whole-brain analysis showed a single region in the lateral left fusiform gyrus where BOLD signal increased with letter sequence probability; no other brain region showed this response pattern. The results suggest tuning of this cortical area to letter probabilities as a result of perceptual experience and provide a possible neural correlate for the 'word superiority effect' observed in letter perception research.Much evidence supports the idea that perceptual systems become selectively efficient at processing inputs that are encountered frequently. In learning a written language, for example, human brains appear to become tuned to the recurring visual patterns of the language represented in its orthographic structure. This is illustrated by the fact that letters embedded in words (such as S in the English word FLASH) or in word-like letter strings (S in FRISH) are more efficiently recognized than letters embedded in unusual letter strings (S in RFHSL) (McClelland and Rumelhart, 1981;Reicher, 1969). Such evidence suggests that normal readers use information about frequently recurring letter combinations, encoded as a result of experience with a specific written language, to more efficiently perceive and identify letters and letter strings.Neuropsychological evidence for an orthographic processor in the brain comes from patients who exhibit 'letter-by-letter reading' after left occipitotemporal brain injury (Binder and Mohr, 1992;Cohen et al., 2003;Leff et al., 2001;Sakurai et al., 2000). Such patients have normal language functions, including good recognition of single letters, but show profoundly impaired processing of letter strings, suggesting focal damage to systems responsible for storing or using orthographic information (Behrmann et al., 1998;Patterson and Kay, 1982;Warrington and Shallice, 1980). This localization is supported by neuroimaging experiments in normal readers, which have identified a region in the lateral left fusiform (occipitotemporal) gyrus that responds more strongly to words and word-like nonwords than to consonant letter strings or nonsense characters Dehaene et al., 2001;Polk and Farah, 2002 1999). Several elegant studies showed that this orthographic system employs an abstract code that is unaffected by changes in letter case (Dehaene et al., 2001Polk and Farah, 2002).Although activation in this brain region appears to be relat...