Le succès d'une gestion des écosystèmes naturels requiert une connaissance approfondie des différents processus qui interviennent et de leurs échelles de temps et d'espace particulières. Pour cette raison, les décideurs ont besoin d'analyser une vaste gamme de données et d'informations géographiques. Les modèles mathématiques, les systèmes d'informations géographi-ques et les systèmes experts sont capables de produire cette analyse, mais seule une minorité de gestionnaires les utilise actuellement. Cet article identifie quelques unes des raisons à l'origine de l'hésitation des gestionnaires à adopter de tels outils d'aide à la décision pour la gestion des ressources naturelles et propose une structure qui pourrait faciliter leur utilisation pour le processus de prise de décision. Cet exercice est réalisé à l'intérieur du contexte de la gestion intégrée par bassin. Une revue des systèmes d'aide à la décision est également présentée.Many methods of integrated or watershed management exist which account for the necessary biophysical and socio-economic factors at the watershed level. Some of these approaches are ecosystem oriented while others are socio-economically oriented. Whatever the definition, water management at the watershed level needs to account for a plenitude of variables related to the air, water, soil, biology, and economy. The successful management of natural ecosystems requires a thorough understanding of their characteristic time and spatial scales. Because of this, decision makers need to analyze a wide range of data and geographic information. Mathematical models, geographic information systems and expert systems are capable of performing this analysis, but only a minority of managers are currently using them. This paper identifies some of the reasons why ecosystem managers have been slow to adopt such decision support tools in natural resources management and proposes a framework to facilitate their use in the decision making process. This is done in an integrated watershed management context. A review of related decision support systems is also presented.Four types of decision-support tools are introduced : mathematical models, expert-systems, geographical information systems (GIS) and decision support systems (DSS). Mathematical models have long been used for simulation, prediction, and forecasting, however, they are often task specific and were rarely developed for management uses. GIS are more and more commonly being used for decision support as they become more affordable and user-friendly and are very well-suited for managing resources at a spatial scale. There exist many kinds of software ranging from a simple viewer used for cartographic purposes to complex GIS oriented toward spatial analysis and modelling. Expert systems are also interesting for decision support when specif...