The Weak (Gorenstein) Global Dimension of Coherent Rings with Finite Small Finitistic Projective Dimension
Khaled Alhazmy,
Fuad Ali Ahmed Almahdi,
Younes El Haddaoui
et al.
Abstract:The small finitistic dimension of a ring is determined as the supremum projective dimensions among modules with finite projective resolutions. This paper seeks to establish that, for a coherent ring R with a finite weak (resp. Gorenstein) global dimension, the small finitistic dimension of R is equal to its weak (resp. Gorenstein) global dimension. Consequently, we conclude some new characterizations for (Gorenstein) von Neumann and semihereditary rings.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.