2012
DOI: 10.1007/s13398-012-0098-y
|View full text |Cite
|
Sign up to set email alerts
|

The weight filtration for real algebraic varieties II: classical homology

Abstract: We associate to each real algebraic variety a filtered chain complex, the weight complex, which is well-defined up to filtered quasi-isomorphism, and which induces on classical (compactly supported) homology with Z2 coefficients an analog of the weight filtration for complex algebraic varieties. This complements our previous definition of the weight filtration of Borel-Moore homology.We define the weight filtration of the homology of a real algebraic variety by first addressing the case of smooth noncompact va… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

3
95
0
11

Year Published

2012
2012
2020
2020

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 19 publications
(109 citation statements)
references
References 24 publications
3
95
0
11
Order By: Relevance
“…The complex of semialgebraic chains of X has the following geometric definition (see [15], Appendix). For k ≥ 0, let S k (X) be the Z/2 vector space generated by the closed semialgebraic subsets of X of dimension ≤ k. The chain group C k (X) is the quotient of S k (X) by the following relations:…”
Section: Allowable Chains and Intersection Homologymentioning
confidence: 99%
See 2 more Smart Citations
“…The complex of semialgebraic chains of X has the following geometric definition (see [15], Appendix). For k ≥ 0, let S k (X) be the Z/2 vector space generated by the closed semialgebraic subsets of X of dimension ≤ k. The chain group C k (X) is the quotient of S k (X) by the following relations:…”
Section: Allowable Chains and Intersection Homologymentioning
confidence: 99%
“…(We overlooked this result in [15].) We have ∂(C c k (X)) ⊂ C c k−1 (X), and the homology of the chain complex (C c * (X), ∂) is canonically isomorphic to the simplicial homology H * (X; Z/2) with respect to a (locally finite) semialgebraic triangulation.…”
Section: Allowable Chains and Intersection Homologymentioning
confidence: 99%
See 1 more Smart Citation
“…[A] ∈ N −k+1 C k (X) (on utilise l'une deséquivalences de la preuve de [14] Corollary 3.12 : X est compacte non-singulière de dimension k).…”
Section: Le Découpage D'une Variété Nash Affine Compacte Munie D'une unclassified
“…On montre que l'on peut trouver une fonction génériquement Nash-constructible sur X/G, divisible par 2 k+α , qui représente π * c. Pour cela, on applique le critère de l'éventail [14] Theorem 4.10à chacune des composantes irréductibles de chaque carte affine de l'adhérence de Zariski Y de X/G età la fonction On peut de plus supposer f 0 génériquement constructible en dimension k, en remplaçant, dans le raisonnement précédent, X par l'adhérence de Zariski du support de c. On a donc π * c ∈ N α C k (X/G).…”
unclassified