Abstract:This paper is devoted to studying the Cauchy problem for non-homogeneous Boussinesq equations. We built the results on the critical Besov spaces (θ,u)∈LT∞(B˙p,1N/p)×LT∞(B˙p,1N/p−1)⋂LT1(B˙p,1N/p+1) with 1<p<2N. We proved the global existence of the solution when the initial velocity is small with respect to the viscosity, as well as the initial temperature approaches a positive constant. Furthermore, we proved the uniqueness for 1<p≤N. Our results can been seen as a version of symmetry in Besov space f… Show more
This Special Issue consists of 11 papers recently published in MDPI’s journal Symmetry under the general thematic title “Symmetry in Mathematical Analysis and Functional Analysis” (see [...]
This Special Issue consists of 11 papers recently published in MDPI’s journal Symmetry under the general thematic title “Symmetry in Mathematical Analysis and Functional Analysis” (see [...]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.