) is investigated, with convective rainfall and dust bursts being observed over the Sahel at the beginning and end of the episode. Three Meso-NH simulations were designed which differed in their dust representation. All the simulations capture the variation in the WAHL intensity well, including the simulation without any dust effects. This shows the primary role of largescale forcing on the WAHL pulsation. In spite of additional daytime heating and night-time cooling effects over the Sahara, the simulation with dust climatology resembles the simulation without any dust effects. In contrast, the simulation using a prognostic dust scheme enhances alternating northward advection of warm and dry air and southward advection of cold and wet air associated with the propagation of an African easterly wave, leading to a strengthening of the WAHL variabilities. This study highlights two effects of dust on the WAHL over the Sahara: a so-called direct effect associated with dust radiative heating, which increases the WAHL thickness, and a so-called indirect effect that intensifies both the African easterly jet and a related African easterly wave.