Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditionsThis article may be used only for the purposes of research, teaching, and/or private study. Commercial use or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher approval, unless otherwise noted. For more information, contact permissions@informs.org.The Publisher does not warrant or guarantee the article's accuracy, completeness, merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or support of claims made of that product, publication, or service.
Copyright © 2017, The Author(s)
Please scroll down for article-it is on subsequent pagesINFORMS is the largest professional society in the world for professionals in the fields of operations research, management science, and analytics. Abstract. We consider a stochastic model for a blood bank, in which amounts of blood are offered and demanded according to independent compound Poisson processes. Blood is perishable, i.e., blood can only be kept in storage for a limited amount of time. Furthermore, demand for blood is impatient, i.e., a demand for blood may be canceled if it cannot be satisfied soon enough. For a range of perishability functions and demand impatience functions, we derive the steady-state distributions of the amount of blood kept in storage, and of the amount of demand for blood (at any point in time, at most one of these quantities is positive). Under certain conditions we also obtain the fluid and diffusion limits of the blood inventory process, showing in particular that the diffusion limit process is an Ornstein-Uhlenbeck process.