The retinal image flow a blowfly experiences in its daily life on the wing is determined by both the structure of the environment and the animal's own movements. To understand the design of visual processing mechanisms, there is thus a need to analyse the performance of neurons under natural operating conditions. To this end, we recorded flight paths of flies outdoors and reconstructed what they had seen, by moving a panoramic camera along exactly the same paths. The reconstructed image sequences were later replayed on a fast, panoramic flight simulator to identified, motion sensitive neurons of the so-called horizontal system (HS) in the lobula plate of the blowfly, which are assumed to extract self-motion parameters from optic flow. We show that under real life conditions HS-cells not only encode information about self-rotation, but are also sensitive to translational optic flow and, thus, indirectly signal information about the depth structure of the environment. These properties do not require an elaboration of the known model of these neurons, because the natural optic flow sequences generate-at least qualitatively-the same depth-related response properties when used as input to a computational HS-cell model and to real neurons.