WT1 encodes a tumor suppressor that is expressed in cells of the developing kidney and is inactivated in Wilms tumor, a pediatric kidney cancer. The adenovirus E1B 55K gene product contributes to the transformation of primary baby rat kidney (BRK) cells by binding and inactivating the product of the p53 tumor suppressor. We have previously demonstrated that WT1 and p53 are present within a protein complex in vivo. We now show that WT1 is physically associated with E1B 55K in adenovirus-transformed cells, an interaction that is mediated by the ®rst two zinc ®ngers of WT1. Immunodepletion of p53 abrogates the coimmunoprecipitation of E1B 55K and WT1, consistent with the presence of a trimeric protein complex containing these three proteins. In the presence of E1B 55K, WT1 which is normally localized in the nucleus, is retained within a very high molecular weight complex and sequestered in the characteristic perinuclear cytoplasmic body that contains E1B 55K and p53. Expression of E1B 55K in osteosarcoma cells that undergo apoptosis following expression of WT1 inhibits WT1-mediated cell death. We conclude that E1B 55K may target WT1 along with p53, resulting in the functional inactivation of both tumor suppressor gene products by this viral oncoprotein.