Bipolar affective disorder (manic-depressive illness)is a chronic, severe, debilitating illness affecting 1-2% of the population. The Food and Drug Administration-approved drugs lithium and valproate are not completely effective in the treatment of this disorder, and the mechanisms underlying their therapeutic effects have not been established. We are employing genetic and molecular approaches to identify common targets of lithium and valproate in the yeast Saccharomyces cerevisiae. We show that both drugs affect molecular targets in the inositol metabolic pathway. Lithium and valproate cause a decrease in intracellular myo-inositol mass and an increase in expression of both a structural (INO1) and a regulatory (INO2) gene required for inositol biosynthesis. The opi1 mutant, which exhibits constitutive expression of INO1, is more resistant to inhibition of growth by lithium but not by valproate, suggesting that valproate may inhibit the Ino1p-catalyzed synthesis of inositol 1-phosphate. Consistent with this possibility, growth in valproate leads to decreased synthesis of inositol monophosphate. Thus, both lithium and valproate perturb regulation of the inositol biosynthetic pathway, albeit via different mechanisms. This is the first demonstration of increased expression of genes in the inositol biosynthetic pathway by both lithium and valproate. Because inositol is a key regulator of many cellular processes, the effects of lithium and valproate on inositol synthesis have far-reaching implications for predicting genetic determinants of responsiveness and resistance to these agents.Bipolar disorder, or manic-depressive illness, is a common condition with a lifetime prevalence of 1-2% (1). It is characterized by recurring bouts of mania and depression, which have deleterious effects on career and interpersonal relationships. Approximately 15% of those afflicted commit suicide, and mortality rates because of physical disorders are also increased (2, 3). For decades, lithium has been the most effective agent for the treatment of bipolar illness (4). Despite the marked benefit that many patients obtain from lithium therapy, 20 -40% of patients fail to show a satisfactory antimanic response to lithium, and many patients suffer significant morbidity (5). More recently, the branched fatty acid valproate has been used for treatment of bipolar disorder (6). Like lithium, it is not completely effective, and the molecular mechanisms underlying its therapeutic effects have not been elucidated. Lithium and valproate exert a variety of biochemical effects, only some of which are likely to be related to their therapeutic mechanisms of action. Identifying common targets of lithium and valproate is an approach that may more directly address the therapeutic mechanisms underlying their efficacy (7-11).The inositol depletion hypothesis proposes that lithium acts by depletion of inositol from the brain. This is based on the observed uncompetitive inhibition of inositol monophosphatases by lithium, resulting in decreased inositol, an i...