Yeast-based interaction assays to determine protein-protein and protein-nucleic acid interactions commonly rely on the reconstitution of chimeric transcription factors that activate the expression of target reporter genes. The enzyme β-galactosidase (β-gal), coded by the LacZ gene of Escherichia coli, is a widely used reporter in yeast systems, and its expression is commonly assessed by evaluating its activity. X-gal (5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside) is an inexpensive and sensitive substrate of β-gal, whose hydrolysis results in an intensely blue colored and easily detectable end product, 5,5 -dibromo-4,4 -dichloro-indigo. The insoluble nature of this end product, however, makes X-gal-based assays unsuitable for direct spectrophotometric absorbance quantification. As such, the use of X-gal is mostly restricted to solid-support approaches, such as colony lift or agar plate assays, which often only provide a qualitative readout. In this article, we describe a quantitative solid-phase X-gal assay to measure protein-protein interaction strength in yeast cells using a simple and low-cost experimental setup. We have optimized multiple aspects of the assay, namely sample preparation, reaction time, and quantification method, for speed and consistency. By integrating the use of a freely available ImageJ-based plugin, we have further standardized the assay for reliability and reproducibility. This improved quantitative X-gal assay can be performed in a standard molecular biology lab without the need for any specialized equipment other than an inexpensive and widely accessible smartphone camera. To exemplify the protocol, we provide detailed step-by-step instructions to perform a quantitative X-gal assay to assess the interaction between two Arabidopsis thaliana proteins, SUPPRESSOR OF PHYA-105 1 (SPA1) and PRODUCTION OF ANTHOCYANIN PIGMENT 2 (PAP2). To demonstrate the sensitivity of our assay in detecting weaker interactions, we also compare the results with a liquid-phase assay that uses ONPG (orthonitrophenyl-β-galactopyranoside) as a substrate for β-gal. The quantitative X-gal assay described here can easily be adapted for high-throughout interaction studies and protein domain mapping, even in yeast strains with low levels of LacZ expression.