The use of non-Saccharomyces yeasts in enology has increased since the beginning of the current century because of the potential improvements they can produce in wine sensory quality. Several review articles have described the potential of some non-Saccharomyces species [1][2][3] and the suitable criteria to select them [4,5] according to the effects of the species on wine color, aroma, body or structure. Most non-Saccharomyces species have low fermentative power, which makes it necessary to use them in sequential fermentations with S. cerevisiae to completely deplete the sugars. Moreover, some of them have slow fermentation kinetics, which is a drawback for a competitive implantation in must containing S. cerevisiae indigenous populations. Emerging technologies to control wild indigenous yeasts can facilitate the development, growth and fermentative activity of the inoculated non-Saccharomyces yeasts and, therefore, the suitable expression of their metabolic properties [6]. This special issue is focused on the description and review of several non-Saccharomyces species with great potential in wine biotechnology, some of which are frequently used at the winery scale, but also produced industrially as dried yeast or liquid inoculant [7].Wine acidity, especially the pH, is a key parameter in wine that controls microbial development and chemical stability. Traditional pH control is driven by acidification processes with tartaric acid or modern ion exchanger techniques, which unfortunately affect sensory quality. The biological modulation of wine acidity can be done efficiently by several non-Saccharomyces species, by the production of lactic acid by Lachancea thermotolerans or succinic acid by Candida stellata, the demalication by Schizosaccharomyces pombe or Pichia kudriavzevii, and the control of volatile acidity in sequential fermentations with Torulaspora delbrueckii or Zygosaccharomyces florentinus highlight the possibilities of non-Saccharomyces in the improvement of wine acidity [8].Biological acidification by L. thermotolerans is a powerful tool to control pH in warm areas [9]. The production of acidity is performed from sugars and the product lactic acid is a stable metabolite during winemaking but also through stabilization and aging. The formation of several metabolites with sensory repercussions has also been described in this species. Acidification by L. thermotolerans is a natural biotechnology that helps to keep lower and more effective levels of molecular and free SO 2 . Currently, in our laboratory we have selected strains of this species able to ferment at more than 12% potential alcohol, which opens the door to single fermentations with single inoculums of L. thermotolerans.Wine deacidification by metabolization of malic acid is an essential step in red winemaking. This acid is unstable during stabilization and aging, and can produce microbial hazes if not eliminated previously. Usually, malic acid is transformed into lactic acid by malolactic fermentation produced by lactic acid bacteria, mainly ...