The paper analyzes findings of the Stardust mission that brought to the Earth dust from the 81P/Wild 2 coma. Just as the data obtained in the Deep Impact mission to 9P/Tempel 1, they are at odds with the universally accepted condensation/sublimation cometary paradigm. They fit rather well to the approach assuming ejection of nuclei of short-period comets from moon-like bodies of the type of Galilean satellites in rare (six to seven events in 4.5 aeons) global explosions of their massive icy envelopes saturated by 2H 2 + O 2 , products of the electrolysis of ice. This approach offers an explanation, in particular, for the jet activity of comets, which is sustained by combustion of the 2H 2 + O 2 + organics mixture ignited and complemented by the solar radiation. Combustion accounts also for other observations, in particular, the presence in the dust of products of high-temperature (800-900 K) metamorphism. The presence of minerals forming at still higher temperatures (~1400-2000 K), just as the undoubtedly planetary origin of some long-period comets arriving from the joint planeto-cometary cloud beyond Neptune, forces one, however, to invoke the closebinary cosmogony of the Solar system, which three decades ago predicted the existence of such a cloud (in the recent decade, this prediction has been substantiated by the discovery there of many dwarf planets). This cosmogony is based on the modern understanding of the processes involved in the formation of multiple stellar systems and of their gas-dynamic evolution. It considers the Jupiter-Sun system as the limiting case of a binary star and uses it as a basis for explanation of all the known observations and for prediction of the new ones to come. It provides a plausible explanation, in particular, for both the origin and capture by the Earth of the Moon as a high-temperature condensate and the formation of the Galilean satellites, which also contain inclusions of refractory minerals in the ices of their envelopes.