Pulmonary hypertension (PH) is a chronic pulmonary vascular disease and causes massive deaths. Here, we intended to investigate the function and mechanism of SOCS5 in PH. We engineered a hypoxia-induced PH model in mice. HE staining were implemented to evaluate pathological alterations in the lung tissues. The potential mechanism of SOCS5 in regulating hypoxia-induced pulmonary artery smooth muscle cell (PASMC) function was explored in vitro. RT-qPCR and western blot revealed that the level of SOCS5 was decreased both in PH mice and hypoxia-induced HPASMCs. Functional assays were performed for confirming the role of SOCS5 in modulating the cell phenotype and JAK2/STAT3 pathway in HPASMCs. Results revealed that overexpression of SOCS5 suppressed proliferation, migration and contraction of HPASMCs and negatively regulated the JAK2/STAT3 signaling pathway in HPASMCs under hypoxia in vitro, while knockdown of SOCS5 accelerated it. As evidenced by mechanism studies, SOCS5 was targeted and regulated by miR-155-5p, hence affecting on HPASMC proliferation, migration and contraction. These outcomes indicated that the decreased level of SOCS5 in hypoxia-induced HPASMCs promoted the cell proliferation, cell migration, and cell contraction through activating JAK2/STAT3 signaling pathway. Moreover, SOCS5 was targeted by miR-155-5p. All in all, our work hinted that miR-155-5p/SOCS5/JAK2/STAT3 axis played a crucial part in PH.