In the present paper we consider weighted random sums ZN = ∑j=1NajXj, where 0 ≤ aj < ∞, N denotes a non-negative integer-valued random variable, and {X, Xj , j = 1, 2,...} is a family of independent identically distributed random variables with mean EX = µ and variance DX = σ2 > 0. Throughout this paper N is independent of {X, Xj , j = 1, 2,...} and, for definiteness, it is assumed Z0 = 0. The main idea of the paper is to present results on theorems of large deviations both in the Cramér and power Linnik zones for a sum ~ZN = (ZN − EZN )(DZN )−1/2 , exponential inequalities for a tail probability P(~ZN > x) in two cases: µ = 0 and µ ≠ 0 pointing out the difference between them. Only normal approximation is considered. It should be noted that large deviations when µ ≠ 0 have been already considered in our papers [1,2].