Research on similarity searching of cheminformatic data sets has been focused on similarity measures using fingerprints. However, nominal scales are the least informative of all metric scales, increasing the tied similarity scores, and decreasing the effectivity of the retrieval engines. Tanimoto's coefficient has been claimed to be the most prominent measure for this task. Nevertheless, this field is far from being exhausted since the computer science no free lunch theorem predicts that "no similarity measure has overall superiority over the population of data sets". We introduce 12 relational agreement (RA) coefficients for seven metric scales, which are integrated within a group fusion-based similarity searching algorithm. These similarity measures are compared to a reference panel of 21 proximity quantifiers over 17 benchmark data sets (MUV), by using informative descriptors, a feature selection stage, a suitable performance metric, and powerful comparison tests. In this stage, RA coefficients perform favourably with repect to the state-of-the-art proximity measures. Afterward, the RA-based method outperform another four nearest neighbor searching algorithms over the same data domains. In a third validation stage, RA measures are successfully applied to the virtual screening of the NCI data set. Finally, we discuss a possible molecular interpretation for these similarity variants.