Strong winds can lead to more complex ice shedding oscillation processes for overhead conductors, inducing flashovers, strand breakages and other accidents. This study analyzes the aerodynamic parameters of several typical icing features and establishes a numerical model for ice shedding on overhead conductors under strong wind conditions. The results show that for the same amount of icing, the resistance and lift force on the conductor changes with ice shape, wind attack angle and wind speed, which has a significant effect on the ice shedding jumping process. When the wind attack angle approaches 180°, the airflow resistance of the fan-shaped and D-shaped icing conductors significantly increases. And in the process of ice shedding response of transmission lines, the lateral amplitude may exceed 20 m, which increase the discharge risk of horizontally arranged conductors. Moreover, for the significant lateral oscillation of conductors by ice shedding under strong wind, the maximum horizontal displacement is approximately 1.6 times the difference in lateral position before and after ice shedding.