In recognition of the impact of the refrigeration sector on climate change, global commitments are achieved to replace hydrofluorocarbon substances with more planet-friendly alternatives. In this regard, countries with high ambient temperatures (HAT) face additional problems in identifying suitable alternatives due to the impact of such temperatures on energy performance in vapor compression systems. This paper presents an experimental analysis using R134a and two lower global warming potential (GWP) mixtures in a small capacity vapor compression refrigeration system for HAT environments. The range of evaporating and condensing conditions was selected to simulate a refrigeration system working at HAT conditions. The experimental operating results show that although R450A values are acceptable, R513A shows better adaptation to refrigeration system in terms of pressure ratio, discharge temperature and mass flow rate. Then, attending to experimental energetic results, R450A energy performance (quantified by COP) and cooling capacity is lower than R513A and R134a. TEWI analysis of a small refrigeration unit shows CO 2 equivalent emission saving when using R450A in the different condensation conditions. However, taking into account the variation of cooling capacity, R513A system results in the lowest TEWI when normalizing per unit of delivered cooling capacity.