Steel and polypropylene hybrid fiber-reinforced concretes have been widely considered for structural applications due to its superior mechanical performance compared to plain and mono fiber-reinforced concretes. Fire is one of the most serious potential risks to concrete structures. The fire resistance of the steel and polypropylene hybrid fiber-reinforced concretes cannot be ignored when assessing the safety of concrete structures. This paper reviews the available studies on the mechanical performance of thermally damaged steel and polypropylene hybrid fiber-reinforced concretes. The deterioration mechanism and the influence of the test factors were discussed. The temperature-dependent mechanical properties of the hybrid fiber-reinforced concretes were analyzed, including compressive elastic modulus, compressive strength, flexural strength, and fracture toughness. In addition, the effect of the post-fire re-curing on the mechanical performance of the thermally damaged steel and polypropylene hybrid fiber-reinforced concretes was also reviewed.