2022
DOI: 10.1109/access.2022.3183618
|View full text |Cite
|
Sign up to set email alerts
|

Theoretical Analysis of Accuracy-Based Fitness on Learning Classifier Systems

Abstract: Like most evolutionary algorithms, accuracy-based learning classifier systems (XCSs) use a fitness metric to recognize the superiority of rules, under a principle that a higher-quality rule has a higher fitness. However, XCS must learn the fitness values under a reinforcement learning scheme. This introduces uncertainty and asynchrony to the fitness estimation while no theoretical work formally guarantees that such a basic principle would hold. The goal of this paper is to complement this fundamental lack in t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 48 publications
0
0
0
Order By: Relevance