In this review, we introduce the progress in the growth of large-aperture DKDP crystals and some aspects of crystal quality including determination of deuterium content, homogeneity of deuterium distribution, residual strains, nonlinear absorption, and laser-induced damage resistance for its application in high power laser system. Large-aperture high-quality DKDP crystal with deuteration level of 70% has been successfully grown by the traditional method, which can fabricate the large single-crystal optics with the size exceeding 400 mm. Neutron diffraction technique is an efficient method to research the deuterium content and 3D residual strains in single crystals. More efforts have been paid in the processes of purity of raw materials, continuous filtration technology, thermal annealing and laser conditioning for increasing the laser-induced damage threshold (LIDT) and these processes enable the currently grown crystals to meet the specifications of the laser system for inertial confinement fusion (ICF), although the laser damage mechanism and laser conditioning mechanism are still not well understood. The advancements on growth of large-aperture high-quality DKDP crystal would support the development of ICF in China.