This tutorial provides a gentle introduction to kernel density estimation (KDE) and recent advances regarding confidence bands and geometric/topological features. We begin with a discussion of basic properties of KDE: the convergence rate under various metrics, density derivative estimation, and bandwidth selection. Then, we introduce common approaches to the construction of confidence intervals/bands, and we discuss how to handle bias. Next, we talk about recent advances in the inference of geometric and topological features of a density function using KDE. Finally, we illustrate how one can use KDE to estimate a cumulative distribution function and a receiver operating characteristic curve. We provide R implementations related to this tutorial at the end.