Abstract-Diffraction gratings have been widely used in wavelength-controlled non-mechanical laser beam steering for high data-rate indoor optical wireless communications (OWC). Existing free-space diffraction gratings suffer from inherent difficulties of limited diffraction efficiency, bulky configuration, high cost and significant coupling loss with optical fiber links. In this work, a new optical approach for highly efficient, compact and fiber compatible laser beam steering using an in-fiber diffraction grating is proposed and experimentally demonstrated for the first time to our best knowledge. In-fiber diffraction is made possible based on a 45° tilted fiber grating (TFG), where wavelength dependent lateral scattering is obtained due to the strongly tilted grating structure. Improved diffraction efficiency of 93.5% has been achieved. In addition, the 45° TFG works perfectly for both light emission and reception, enabling full-duplex optical wireless transmission. Utility of the 45° TFG in all-fiber laser beam steering for multi-user full duplex optical wireless communications has been verified in experiments. 1.4 m free-space full-duplex wireless transmission has been demonstrated with data rate up to 12 Gb/s per beam using 2.4 GHz bandwidth OFDM signals.