Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In this paper, Casimir force sensitivity is investigated by utilizing a micro-cantilever under the driving forces in heptamodal operations. A novel forced Van der Pol-Rayleigh-Helmholtz nonlinear oscillator model is developed to describe the nonlinear dynamics of the micro-cantilever which is subject to the excitation and Casimir forces simultaneously. Demonstrating the effectiveness of the heptamodal operations, single- and tetramodal-frequency excitation schemes are also applied separately to resonate the micro-cantilever at the fundamental and higher eigenmodes. The oscillation observables of the externally driven micro-cantilever are determined in the presence of the Casimir forces in the separation distance range of 200–800 nm. Remarkable variations in amplitude ratio, phase shift, and frequency shift for different effective masses of the micro-cantilever are explored for the higher eigenmodes. In the current work, the AFM micro-cantilever exhibits the amplitude response of 0.82 nm to Casimir force at the fourth eigenmode for the separation distance ranging between 200 and 300 nm. The stable frequency shifts ranging between 103 and 106 Hz are also observed at the first four eigenmodes for larger separation distances (above around 500 nm). Moreover, the maximum phase shift response of around 150 degrees at the sixth eigenmode is achieved using heptamodal-frequency excitation of the lightest micro-cantilever (3.6 × 10−12 kg) at the separation distance of 200 nm. Thus, implementing heptamodal-frequency excitation schemes has considerable potential to improve the phase shift sensitivity to Casimir forces when compared with other excitation schemes. Additionally, the parameters of the nonlinear oscillator significantly determine the patterns of the time-domain sensitivities to the external forces. Correspondingly, displacements of the micro-cantilever under the driving and Casimir forces at different eigenmodes are obtained to investigate diverse system nonlinearities. Furthermore, the virial and dissipated power are also determined for different effective masses of the micro-cantilever to explain the energy dissipation process in the measurement of Casimir forces. Therefore, in the present work, the observable responses and energy quantities for particular system nonlinearities are introduced to be utilized for nanometrological applications.
In this paper, Casimir force sensitivity is investigated by utilizing a micro-cantilever under the driving forces in heptamodal operations. A novel forced Van der Pol-Rayleigh-Helmholtz nonlinear oscillator model is developed to describe the nonlinear dynamics of the micro-cantilever which is subject to the excitation and Casimir forces simultaneously. Demonstrating the effectiveness of the heptamodal operations, single- and tetramodal-frequency excitation schemes are also applied separately to resonate the micro-cantilever at the fundamental and higher eigenmodes. The oscillation observables of the externally driven micro-cantilever are determined in the presence of the Casimir forces in the separation distance range of 200–800 nm. Remarkable variations in amplitude ratio, phase shift, and frequency shift for different effective masses of the micro-cantilever are explored for the higher eigenmodes. In the current work, the AFM micro-cantilever exhibits the amplitude response of 0.82 nm to Casimir force at the fourth eigenmode for the separation distance ranging between 200 and 300 nm. The stable frequency shifts ranging between 103 and 106 Hz are also observed at the first four eigenmodes for larger separation distances (above around 500 nm). Moreover, the maximum phase shift response of around 150 degrees at the sixth eigenmode is achieved using heptamodal-frequency excitation of the lightest micro-cantilever (3.6 × 10−12 kg) at the separation distance of 200 nm. Thus, implementing heptamodal-frequency excitation schemes has considerable potential to improve the phase shift sensitivity to Casimir forces when compared with other excitation schemes. Additionally, the parameters of the nonlinear oscillator significantly determine the patterns of the time-domain sensitivities to the external forces. Correspondingly, displacements of the micro-cantilever under the driving and Casimir forces at different eigenmodes are obtained to investigate diverse system nonlinearities. Furthermore, the virial and dissipated power are also determined for different effective masses of the micro-cantilever to explain the energy dissipation process in the measurement of Casimir forces. Therefore, in the present work, the observable responses and energy quantities for particular system nonlinearities are introduced to be utilized for nanometrological applications.
In the present work, a nonlinear dynamic model based on the forced Van der Pol-Rayleigh-Mathieu is used to acquire the observable responses of the micro-cantilever to dynamic acoustic forces in the single-frequency excitations. Behaviors of the resonant micro-cantilever under external forces are strongly dependent on the simulation parameters. The start time, the time interval, and the initial boundary conditions considerably affect the flexural deflections on the particular time domains. Additionally, amplitude and phase shift can be simply extracted from the oscillatory motions to explore the micro-cantilever sensitivity to acoustic forces for different start times and time intervals. For instance, the amplitude at the second eigenmode fluctuates in the 0–500 pm region on the start time domain of 0–20 ms for the time interval range of 0.0001–0.1 ms. It is remarkably vital to observe the changes in the observables in response to different values of numerical simulation parameters for better sensitivity analysis. Furthermore, dynamic responses including displacements and velocities are demonstrated for the first two flexural eigenmodes considering different initial displacements. Therefore, the single-frequency responses of the resonant micro-cantilever can be investigated to quantify the sensitivity to periodic acoustic forces considering the effects of numerical simulation parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.