This paper presents the experimental results of six full‐scale one‐way reinforced concrete slabs with variations in reinforcement detailing. Test specimens consisted of two reference concrete slabs reinforced fully with glass fiber reinforced polymer (GFRP) rebars or with steel rebars and four hybrid‐reinforced slabs. The variables included the arrangement of rebars, mechanical reinforcing ratio, and the ratio of steel rebar area to GFRP rebar area. The fabricated specimens were subjected to four‐point loading until failure in the strong floor laboratory. Experimental results indicated that hybrid reinforcement enhances stiffness compared to FRP reinforcement and provides a higher load‐bearing capacity than steel reinforcement. Also, it was observed that FRP bars placed as tensile reinforcement, similar in number and diameter size to steel bars placed as compressive reinforcement in a slab result in the highest ultimate capacity. Moreover, it was observed that while the mechanical reinforcing ratio contributes to the overall behavior of hybrid‐reinforced concrete slabs, the ratio of steel rebar area to GFRP rebar area is not considerably effective. Furthermore, image processing was employed to determine the exact crack widths of specimens after failure. Finally, finite element modeling results showed good agreement with the experimental results.