Brake friction lining material is the critical element of a braking system, since it provides friction resistance to the rotating drum for controlling automobiles. The present study involves wear analysis of newly developed eco-friendly non-asbestos friction lining material for automotive drum brake applications using experimental study, finite-element analysis, and microstructural investigations. Theoretical interpretation of braking force at different automobile speeds was derived using fundamentals. Specimen drum brake liner with eco-friendly material compositions was produced using an industrial hot compression molding process at one of the manufacturer. The surface wear of the liner was measured using an effective and accurate method. Furthermore, a finite-element analysis model was developed considering actual operating conditions and various components of the drum brake system. The model was elaborated for various result outcomes, including Von-Mises stresses and total deformation of components of the drum brake, and further used to estimate the surface wear of the friction lining material in terms of transverse directional deformation. Finally, microstructural analysis of the friction lining material was carried out using scanning electron microscopy and energy dispersive spectroscopy. From the results, it is seen that the developed friction lining material is wear resistant. The finite-element analysis model can be effectively utilized to study the tribological characteristics of friction lining materials.