Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Understanding flow characteristics of fluid near rough contact is important for the design of fluid-based lubrication and basic of tribology physics. In this study, the spreading and seepage processes of anhydrous ethanol in the interface between glass and rough PDMS are observed by a homemade optical in-situ tester. Digital image processing technology and numerical simulation software are adapted to identify and extract the topological properties of interface and thin fluid flow characteristics. Particular attention is paid to the dynamic evolution of the contact interface morphology under different stresses, the distribution of microchannels in the interface, the spreading characteristics of the fluid in contact interface, as well as the mechanical driving mechanism. Original surface morphology and the contact stress have a significant impact on the interface topography and the distribution of interfacial microchannels, which shows that the feature lengths of the microchannels, the spreading area and the spreading rate of the fluid are inversely proportional to the load. And the flow path of the fluid in the interface is mainly divided into three stages: along the wall of the island, generating liquid bridges, and moving from the tip side to the root side in the wedge-shaped channel. The main mechanical mechanism of liquid flow in the interface is the equilibrium between the capillary force that drives the liquid spreading and viscous resistance of solid wall to liquid. In addition, the phenomenon of “trapped air” occurs during the flow process due to the irregular characteristics of the microchannel. This study lays a certain theoretical foundation for the research of microscopic flow behavior of the liquid in the rough contact interface, the friction and lubrication of the mechanical system, and the sealing mechanism.
Understanding flow characteristics of fluid near rough contact is important for the design of fluid-based lubrication and basic of tribology physics. In this study, the spreading and seepage processes of anhydrous ethanol in the interface between glass and rough PDMS are observed by a homemade optical in-situ tester. Digital image processing technology and numerical simulation software are adapted to identify and extract the topological properties of interface and thin fluid flow characteristics. Particular attention is paid to the dynamic evolution of the contact interface morphology under different stresses, the distribution of microchannels in the interface, the spreading characteristics of the fluid in contact interface, as well as the mechanical driving mechanism. Original surface morphology and the contact stress have a significant impact on the interface topography and the distribution of interfacial microchannels, which shows that the feature lengths of the microchannels, the spreading area and the spreading rate of the fluid are inversely proportional to the load. And the flow path of the fluid in the interface is mainly divided into three stages: along the wall of the island, generating liquid bridges, and moving from the tip side to the root side in the wedge-shaped channel. The main mechanical mechanism of liquid flow in the interface is the equilibrium between the capillary force that drives the liquid spreading and viscous resistance of solid wall to liquid. In addition, the phenomenon of “trapped air” occurs during the flow process due to the irregular characteristics of the microchannel. This study lays a certain theoretical foundation for the research of microscopic flow behavior of the liquid in the rough contact interface, the friction and lubrication of the mechanical system, and the sealing mechanism.
In this work, two kinds of microtextured surfaces with different surface peak-valley features, namely positively skewed surface with micropillar array and negatively skewed surface with micropit array, are prepared to explore the effect of peak-valley features on the fluid flow performance in rough contact interface. The distribution and connectivity of microchannels is analyzed, and the physical mechanism of peak-valley features inducing different fluid flow processes is also derived through constructing a kinetic model of fluid spreading. It is found that when the surface skewness Ssk > 0, the positively skewed surface forms the void regions with better connectivity in the interface compared with the negatively skewed surface (Ssk < 0), despite both the surfaces having nearly the same roughness (Sa ∼ 3.6 mm). The formed microchannels are defined as crossed open microchannel and semi-closed microchannel, respectively, and the feature length of the microchannel decreases with the increase in load. The quantitative results of fluid flow demonstrate that the liquid has a better spreading and flow ability in the contact interface of the positively skewed surface. Even under the same microchannel feature length (nearly 48 mm), the fluid spread area ratio of the positively skewed surface has an order of magnitude higher than that of the negatively skewed surface. The mechanism of different flow characteristics induced by surface peak-valley features is believed as the variation of the microchannel shape, leading to the change in the capillary pressure at the meniscus. We believe the present work would lay a theoretical foundation for regulating the microscopic flow behavior in the contact interface.
Restricting the diffusion of conductive inks plays a key role in printed electronics application. Micro-channels with different sidewall surface energies, which can be approximated as a capillary, are fabricated to restrict the blade-coated ink diffusion using both of the gravitational effect and the capillary force. The coffee ring effect of aqueous silver ink is inhibited by the capillary force when the hydrophobic sidewalls distance is no more than 50 μm in this paper. As a result, the conductive lines with improved cross-sectional profiles are obtained by this method, with the typical resistivity more than 108 times lower than the measured results with hydrophilic sidewalls. The capillary force was also found to lose its effect when the width is larger enough, which needs surfactant addition to improve the silver film property. I–V curves of the original aqueous ink and the ink improved by traditional methods shows that the profile improvement by the hydrophobic sidewall can be used with other ink improving methods cooperatively. These studies open up the possibility of improving the printed conductive patterns by this method as an auxiliary tool used together with the traditional methods reported before.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.