Microchip electrophoresis (MCE) has been advanced remarkably by the applications of several separation modes and the integration with several chemical operations on a single planer substrate. MCE shows superior analytical performance, e.g., high-speed analysis, high resolution, low consumption of reagents, and so on, whereas low-concentration sensitivity is still one of the major problems. To overcome this drawback, various online sample preconcentration techniques have been developed in MCE over the past 15 years, which have successfully enhanced the detection sensitivity in MCE. This review highlights recent developments in online sample preconcentration in MCE categorized on the basis of "dynamic" and "static" methods. The dynamic techniques including field amplified stacking, ITP, sweeping, and focusing have been easily applied to MCE, which provide effective enrichments of various analytes. The static techniques such as SPE and filtration have also been combined with MCE. In the static techniques, extremely high preconcentration efficiency can be obtained, compared to the dynamic methods. This review provides comprehensive tables listing the applications and sensitivity enhancement factors of these preconcentration techniques employed in MCE.