As a major limitation for power scaling of high power narrow linewidth fiber master oscillator power amplifiers (MOPAs), Stimulated Brillouin Scattering (SBS) induced selfpulsing in polarization maintaining (PM) fiber amplifiers is well characterized and analyzed in this paper by comparing different white noise signal (WNS) phase-modulated modes in experiments. It is found that the self-pulsing effect is not observed in the PM-amplifier with single-frequency laser seed injection, and cascaded WNS modulation provides superior self-pulsing suppression than single WNS modulation with similar output linewidth. Moreover, the experimental results indicate that the self-pulsing threshold can hardly be predicted only by the output linewidth or the defined SBS threshold in a WNS phase modulated fiber amplifier system. As self-pulsing is originated from the spectral spikes in WNS modulated system, we theoretically analyzed characteristics of these spikes in different phase-modulation modes. It indicates the spectral peak intensity can be reduced by cascaded modulation, for which self-pulsing can be suppressed. The theoretical predictions agree well with the experimental results. At the same time, in order to suppress the mode instability effect, a plum blossom shaped bending mode selection device is used in this high-power narrow linewidth fiber amplifier system. Finally, a 32 GHz cascaded WNSs modulated, over than 2.5 kW linearly polarized all-fiber amplifier with a slope efficiency of 86.7% is demonstrated. The polarization extinction ratio (PER) is measured larger than 14 dB and the beam quality factor M 2 maintains lower than 1.3 in the power scaling process.