Abstract-Superdirective beamforming can highly reduce the aperture size of high-frequency receive array. At the same time, the closely spaced elements of a small aperture array can make it low efficiency and sensitivity to the array uncertainty, which limit its application in practice. Using a parameter called sensitivity factor, we found that array efficiency and robustness against array error could be considered simultaneously. On that basis, we derive a novel superdirective beamforming criterion based on a constrained sensitivity factor for the HF circular receive array. New method is analytical and computationally inexpensive. Through making the directive gain with a given sensitivity factor maximum, we calculate the optimal weights of the array elements. To illustrate the proposed method can increase the acceptance of HF superdirective receive arrays in practice, several numerical results are provided.