Extensive studies of ion implantation into near surface areas of materials have demonstrated astonishing changes of such properties as surface tension, friction, and durability. The cost of implanted ions is currently rather high due to the limited ion current density of the usual ion sources, especially if ions from sources other than gaseous plasma must be used. The advent of the laser ion source, which offers many orders of magnitude higher current densities than classical ion sources, may change the scenario for a wide range of applications, making ion implantation as crucial a manufacturing technology in the future for other industries as it is today for microelectronics.