The relativistic coupled-cluster (RCC) theory has been applied recently to a number of heavy molecules to determine their properties very accurately. Since it demands large computational resources, the method is often approximated to single and double excitations (RCCSD method). The effective electric fields ( E e f f ) and molecular permanent electric dipole moments (PDMs) of SrF, BaF, and mercury monohalides (HgX with X = F, Cl, Br, and I) molecules are of immense interest for probing fundamental physics. In our earlier calculations of E e f f and PDMs for the above molecules, we neglected the non-linear terms in the property evaluation expression of the RCCSD method. In this work, we demonstrate the roles of these terms in determining the above quantities and their computational time scalability with the number of processors of a computer. We also compare our results with previous calculations that employed variants of RCC theory, as well as other many-body methods and available experimental values.