We employ quasiparticle path integral molecular dynamics to study how theexcitonic properties of model semiconductors are altered by electron-phononcoupling. We describe ways within a path integral representation of the systemto evaluate the renormalized mass, binding energy, and radiative recombinationrate of excitons in the presence of a fluctuating lattice. To illustrate thisapproach, we consider Fr\"ohlich-type electron-phonon interactions and employan imaginary time influence functional to incorporate phonon-induced effectswithout approximation. The effective mass and binding energies are comparedwith perturbative and variational approaches, which provide qualitativelyconsistent trends. We evaluate electron-hole recombination rates as mediatedthrough both trap-assisted and bimolecular processes, developing a consistentstatistical mechanical approach valid in the reaction limited regime. Thesecalculations demonstrate how phonons screen electron-hole interactions,generically reducing exciton binding energies and increasing their radiativelifetimes.