Hybrid anion exchange membranes (AEMs) were prepared via chemically functionalizing and crosslinking poly(styrene‐b‐[ethylene‐co‐butylene]‐b‐styrene) (SEBS) copolymers and low molecular weight homo‐polystyrene (hPS). Via sequential chloromethylation, crosslinking, quaternization, and alkalization, a series of hPS/SEBS AEMs were obtained with varying content of hPS. Systematic structural, morphological, mechanical, absorption, and transport measurements reveal that these properties depend on the total PS content in the membranes. Particularly, increasing total PS content causes (a) PS domains in the AEMs transition the cylindrical morphology to lamella‐like morphology with comparable correlation length; (b) Young's modulus, water uptake, swelling ratio, ionic exchange capacity and ionic conductivity of the AEMs, and Tg of PS phase increase. In addition, the alkaline stability of the hPS/SEBS AEMs is also improved by addition of hPS. These findings suggest that the proposed method can develop high performance SEBS AEMs that are suitable for fuel cell applications.