The dielectric interpretation of crystal ionicity evolved by Phillips and Van Vechten (P.V.V) has been utilized to evaluate various ground state properties for broad range of semiconductors and insulators. Although, the relevance of P.V.V dielectric theory has been restricted to only simple ANB8-N structured compounds, which have a particular bond. Levine has broadened P.V.V. theory of ionicity to multiple bond and complex crystals and evaluated many bond parameters for ternary tetrahedral semiconductors. Some other researchers have extended Levine’s work with a concept of ionic charge product and nearest neighbour distance to binary and ternary tetrahedral crystals to evaluate the ground state properties. In this paper, a new hypothesis of average atomic number of the elements in a compound has been used to understand the some electronic and optical properties such as ionic gap (Ec), average energy gap (Eg), crystal ionicity (fi), electronic susceptibility (χ), and dielectric constant (ϵ) of ternary tetrahedral (AIIBIV and AIBIII) semiconductors. A reasonably acceptable agreement has been noticed between our evaluated values and other researchers reported values.