High-damping rubber (HDR) dampers have the advantages of convenience for various shapes of pressure blocks, aesthetic installation, easy maintenance, temperature stability, etc.; thus, they present good application prospects in the vibration reduction of stay cables. Hence, a model of a taut cable equipped with two types of HDR damper—i.e., HDR damper and tuned mass–high-damping rubber damper (TM-HDR-D)—is established herein. Then, based on this theoretical model, the effect of each damper acting alone and in combination on the cable’s additional modal damping is studied. Finally, an actual cable of a cable-stayed bridge is used to study the effectiveness of two dampers for practical engineering. The results show that, when the TM-HDR-D has a small mass, the total additional modal damping of the cable approximates the superposition of the respective effects of the two dampers. The damping effect of HDR mainly depends on its stiffness and installation position; meanwhile, the damping contribution of TM-HDR-D is mainly related to its tuning frequency and installation position. In practical engineering, the smaller installation mass of TM-HDR-D can make up for the lack of damping enhancement of the cable-end HDR damper.