Active combustion control (ACC) technology is an effective measure for suppressing the combustion oscillation of aero-engines. The magnetostrictive actuator is the most suitable choice for the ACC actuator due to its excellent high-frequency characteristics and high-temperature resistance. For the magnetostrictive actuator to produce high-frequency displacement, the constant current driver must have sufficient power, which increased its mass. A solution is to use multi-channel and low-power constant current driver. Therefore, the coil of the magnetostrictive actuator is axially dispersed and driven by two four-channel servo amplifiers. The driver's mass is significantly reduced while maintaining the same electromagnetic conversion effect. In addition, an analytical model of a discrete coil magnetostrictive actuator is established, and a series of experiments are conducted. The maximum hysteresis error of output displacement at 200 Hz is reduced by 15.2%. Furthermore, under PID closed-loop control, the root mean square (RMS) error is less than 2% when tracking a 10 Hz sinusoidal displacement with coil switching drive.