2021
DOI: 10.31224/osf.io/hqfsx
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Theoretical predictions of dynamic necking formability of ductile metallic sheets with evolving plastic anisotropy and tension-compression asymmetry

Abstract: In this paper, we have investigated necking formability of anisotropic and tension-compression asymmetric metallic sheets subjected to in-plane loading paths ranging from plane strain tension to equibiaxial tension. For that purpose, we have used three different approaches: a linear stability analysis, a nonlinear two-zone model and unit-cell finite element calculations. We have considered three materials –AZ31-Mg alloy, high purity α-titanium and OFHC copper– whose mechanical behavior is described with an ela… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 42 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?