Abstract.Results from the analysis of MLT wind measurements at Dixon (73.5 • N, 80 • E), Esrange (68 • N, 21 • E), Castle Eaton (UK) (53 • N, 2 • W), and Obninsk (55 • N, 37 • E) during summer 2000 are presented in this paper. Using S-transform or wavelet analysis, quasi-two-day waves (QTDWs) are shown to appear simultaneously at high-and mid-latitudes and reveal themselves as several bursts of wave activity. At first this activity is preceded by a 51-53 h wave with S=3 observed mainly at mid-latitudes. After a short recess (or quiet time interval for about 10 days near day 205), we observe a regular sequence of three bursts, the strongest of them corresponding to a QTDW with a period of 47-48 h and S=4 at mid-altitudes.We hypothesize that these three bursts may be the result of constructive and destructive interference between several spectral components: a 47-48 h component with S=4; a 60-h component with S=3; and a 80-h component with S=2. The magnitudes of the lower (higher) zonal wave-number components increase (decrease) with increasing latitude. The S-transform or wavelet analysis indicates when these spectral components create the wave activity bursts and gives a range of zonal wave numbers for observed bursts from about 4 to about 2 for mid-and high-latitudes. The main spectral component at Dixon and Esrange latitudes is the 60-h oscillation with S=3. The zonal wave numbers and frequencies of the observed spectral components hint at the possible occurrence of the nonlinear interaction between the primary QTDWs and other planetary waves. Using a simple 3-D nonlinear numerical model, we attempt to simulate some of the observed features and to explain them as a consequence of the nonlinear interaction between the primary 47-48 h and the 9-10 day waves, and the resulting linear superposition of primary and secondary waves. In addition to the QTDW bursts, we also infer forcing of the 4-day wave with S=2 and the 6-7 day wave with S=1, possibly arising from nonlinear decoupling of the 60-h wave with S=3. The starting mechanism for this decoupling is the Rossby wave instability (e.g.Correspondence to: E. Merzlyakov (eugmer@typhoon.obninsk.org) Baines, 1976). This result is consistent with the day-to-day wind variability during the observed QTDW events. An interesting feature of the final stage of the observed QTDW activity in summer 2000 is the occurrence of strong 4-5 day waves with S=3.