Multiple biological processes are regulated by kinases and phosphatases. This study aims to provide nonenzymatic models for phosphorylation and dephosphorylation of serine, threonine, and tyrosine phosphate using ab initio guantum mechanical calculations. We reduce the problem to methyl phosphate hydrolysis to model serine/threonine, and the hydrolysis of phenyl phosphate to model the tyrosine. HF, B3LYP, and MP2 calculations with a 6‐31+G(d) basis set were employed. The effect of water as a catalyst was also analyzed. As expected, the activation energy barrier is lowered. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 43–51, 2000