Abstract-Dual-band metamaterial absorber (MA) with polarization independency based on omega (Ω) resonator with gap and octastar strip (OSS) configuration is presented both numerically and experimentally. The suggested MA has a simple configuration which introduces flexibility to adjust its metamaterial (MTM) properties and easily re-scale the structure for other frequencies. In addition, the dualband character of the absorber provides additional degree of freedom to control the absorption band(s). Two maxima in the absorption are experimentally obtained around 99% at 4.0 GHz for the first band and 79% at 5.6 GHz for the second band which are in good agreement with the numerical simulations (99% and 84%, respectively). Besides, numerical simulations validate that the MA could achieve very high absorption at wide angles of incidence for both transverse electric (T E) and transverse magnetic (T M ) waves. The proposed MA and its variations enable myriad potential applications in medical technologies, sensors, modulators, wireless communication, and so on.