Taking into consideration the research that has been conducted on the optical and electrical properties of molecular systems, especially the good thermoelectric energy conversion at a nanometric scale that such systems have presented, here we present a new alternative by using a particular diphenyl-ether molecule as a functional device. Such a molecular system is modeled as a planar segment coupled to two electrodes in the first-neighbor approximation within a tight-binding Hamiltonian. We study the electrical and thermal properties of diphenyl-ether molecules such as the electric current, electrical and thermal conductance, Seebeck coefficient, and figure of merit, in the strong and weak coupling regimes, considering different structural configurations and variations with temperature. Our results could be valuable for laboratory applications and/or verification since we characterize the diphenyl-ether molecule as a semiconductor device for different structural models.