Boron dopant incorporation into host GaAs material to form a novel BGaAs semiconductor has been studied using a 10-band kp model. This model allows us to calculate the electronic band structure along the crystallographic direction. So, from the obtained E-k relation, we calculate the carrier effective mass, intrinsic carrier concentration, and x = 0 (GaAs) are in good agreement with previously reported literature. The intrinsic carrier concentration variation is seen as monotonic with boron composition. On the other hand, the composition-dependent Debye temperature observed reduction along with symmetry directions, K by 1.23/%B, R by À 2.33/%B, and D by À 3.52/%B, which leads to the lower stability of crystalline BGaAs alloy. In addition, the interband absorption coefficient as a function of photon energy shows nonmonotonic dependence with fundamental absorption observed at 1.39 eV. Whereas, in the case of quantum well, the optical gain spectrum peak is blueshifted with the density of injected carriers. Hence, this study provides beneficial guidance in the interpretation of applications such as solar cells, optical modulators, multiple QWs.