We investigate the singlet fission (SF) dynamics of a slipstack-like pentacene ring-shaped aggregate model, which is constructed by rotating each pentacene unit around its longitudinal axis in an H-aggregate ring. The aggregate size (N) and rotation angle (α) dependences of SF rates and double triplet (TT) yields are clarified using the quantum master equation method. It is found that there exist optimal ranges of the rotation angle α for each N, yielding efficient SF with high SF rates and TT yields. For example, in an 8-mer model, SF rates at α = 23 and 43°are 18.9 and 38.6 times as high as that at α = 30°, respectively, and the TT yields are as high as 0.871, 0.988, and 0.882 at α = 23, 30, and 43°, respectively. Analysis of the relative relaxation factors shows that the many-to-many relaxation paths from adiabatic Frenkel exciton (FE)-like states to TT-like states are opened by tuning α at relevant aggregate sizes, causing fast and high-TT-yield SF, and efficient SF occurs at α = 40°for medium N (7 ≤ N ≤ 10) or at α = 30°for large N (>10). This mechanism is interpreted by the second-order perturbation theory for electronic couplings. Namely, the inequality in the energies of chargetransfer states [CA and AC states, where the cation (C) and anion (A) are located at two neighboring sites in anticlockwise and clockwise directions, respectively] and the change in the amplitude and sign of the couplings between the FE, CT, and TT states are found to cause quantum superposition of the FE and TT states, which contribute to the high TT yield and SF rate. The present results contribute to a deeper understanding of SF dynamics in ring-shaped aggregates as well as to the development of their new design guidelines.